Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures
نویسندگان
چکیده
Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate.
منابع مشابه
Role of Hydrogen Transfer and Ionic Bonding on RR, SS and RS Medetomidine Conglomerates/Acids Stability: A Theoretical Study
This study focuses on RR, SS and RS medetomidine (MM) and inclusion of several achiral acids to distinguish which acid can help conglomerate formation instead of crystallizating racemic mixtures by defining the low-lying energy of their structures. Favorable orientation of acids was determined in interaction with the MM enantiomers after optimization. The most noticeable interactions include hy...
متن کاملPrediction of Satranidazole Solubility in Water-Polyethylene Glycol 400 Mixtures Using Extended Hildebrand Solubility Approach
The Extended Hildebrand Solubility Parameter Approach (EHSA) is used to estimate the solubility of satranidazole in binary solvent systems. The solubility of satranidazole in various water-PEG 400 mixtures was analyzed in terms of solute-solvent interactions using a modified version of Hildebrand-Scatchard treatment for regular solutions. The solubility equation employs term interaction ...
متن کاملAnalysis of Molecular Interactions Using the Thermophoresis Method and its Applications in Neuroscience and Biological Processes
Introduction: Molecular interactions play an important role in the phenomenon and biological processes. In fact, any cellular biological process ranged from genetic replication to the production of various proteins to the transmission of neurological, hormonal, membrane involves collections of molecular interactions that occur continuously. Interference in each of these processes at every stage...
متن کاملInternal friction controls the speed of protein folding from a compact configuration.
Several studies have found millisecond protein folding reactions to be controlled by the viscosity of the solvent: Reducing the viscosity allows folding to accelerate. In the limit of very low solvent viscosity, however, one expects a different behavior. Internal interactions, occurring within the solvent-excluded interior of a compact molecule, should impose a solvent-independent upper limit t...
متن کاملپتانسیل الکتروستاتیک یک مولکول زیستی مارپیچی در رژیم دیبای- هوکل با در نظر گرفتن ناهمگنی دیالکتریک
Inside living cells, many essential processes involve deformations of charged helical molecules and the interactions between them. Actin filaments and DNA molecules are important examples of charged helical molecules. In this paper, we consider an impermeable double stranded charged molecule in the solvent. According to the nature, the dielectric constant of the molecule is considerably differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016